JavaScript is required to consult this page

Extra-P is an automatic performance-modeling tool that supports the user in the identification of scalability bugs. A scalability bug is a part of the program whose scaling behavior is unintentionally poor, that is, much worse than expected.

Extra-P uses measurements of various performance metrics at different processor configurations as input to represent the performance of code regions (including their calling context) as a function of the number of processes. All it takes to search for scalability issues even in full-blown codes is to run a manageable number of small-scale performance experiments, launch Extra-P, and compare the asymptotic or extrapolated performance of the worst instances to the expectations. Besides the number of processes, it is also possible to consider other parameters such as the input problem size.

Extra-P generates not only a list of potential scalability bugs but also human-readable models for all performance metrics available such as floating-point operations or bytes sent by MPI calls that can be further analyzed and compared to identify the root causes of scalability issues.

Other software

All software

3DSpineMFE

A MATLAB® toolbox that given a three-dimensional spine reconstruction computes a set of characteristic morphological measures that unequivocally determine the spine shape.

Modelling and simulation

Arbor

Arbor is a high-performance library for computational neuroscience simulations with multi-compartment, morphologically-detailed cells, from single cell models to very large networks. Arbor is written from the ground up with many-cpu and gpu architectures in mind, to help neuroscientists effectively use contemporary and future HPC systems to meet their simulation needs. Arbor supports NVIDIA and AMD GPUs as well as explicit vectorization on CPUs from Intel (AVX, AVX2 and AVX512) and ARM (Neon and SVE). When coupled with low memory overheads, this makes Arbor an order of magnitude faster than the most widely-used comparable simulation software. Arbor is open source and openly developed, and we use development practices such as unit testing, continuous integration, and validation.

Modelling and simulationCellular level simulation

BioExcel Building Blocks

BioExcel Building Blocks Workflows is a collection of biomolecular workflows to explore the flexibility and dynamics of macromolecules, including signal transduction proteins or molecules related to the Central Nervous System. Molecular dynamics setup for protein and protein-ligand complexes are examples of workflows available as Jupyter Notebooks. The workflows are built using the BioBB software library, developed in the framework of the BioExcel Centre of Excellence. BioBBis a collection of Python wrappers on top of popular biomolecular simulation tools, offering a layer of interoperability between the wrapped tools, which make them compatible and prepared to be directly interconnected to build complex biomolecular workflows.

Modelling and simulationMolecular and subcellular simulation

Make the most out of EBRAINS

EBRAINS is open and free. Sign up now for complete access to our tools and services.

Ready to get started?Create your account