JavaScript is required to consult this page

RTNeuron is a scalable real-time rendering tool for the visualisation of neuronal simulations based on cable models. Its main utility is twofold: the interactive visual inspection of structural and functional features of the cortical column model and the generation of high quality movies and images for presentations and publications. The package provides three main components:

  • A high level C++ library.
  • A Python module that wraps the C++ library and provides additional tools.
  • The Python application script rtneuron-app.py

    A wide variety of scenarios is covered by rtneuron-app.py. In case the user needs a finer control of the rendering, such as in movie production or to speed up the exploration of different data sets, the Python wrapping is the way to go. The Python wrapping can be used through an IPython shell started directly from rtneuron-app.py or importing the module rtneuron into own Python programs. GUI overlays can be created for specific use cases using PyQt and QML.

Other software

All software

3D Slicer

3D Slicer is: A software platform for the analysis (including registration and interactive segmentation) and visualization (including volume rendering) of medical images and for research in image guided therapy. A free, open source software available on multiple operating systems: Linux, MacOSX and Windows Extensible, with powerful plug-in capabilities for adding algorithms and applications. Features include: Multi organ: from head to toe. Support for multi-modality imaging including, MRI, CT, US, nuclear medicine, and microscopy. Bidirectional interface for devices. There is no restriction on use, but Slicer is not approved for clinical use and intended for research. Permissions and compliance with applicable rules are the responsibility of the user.

Data analysis and visualisation

3DSpineMFE

A MATLAB® toolbox that given a three-dimensional spine reconstruction computes a set of characteristic morphological measures that unequivocally determine the spine shape.

Modelling and simulation

3DSpineS

Dendritic spines of pyramidal neurons are the targets of most excitatory synapses in the cerebral cortex and their morphology appears to be critical from the functional point of view. Thus, characterizing this morphology is necessary to link structural and functional spine data and thus interpret and make them more meaningful. We have used a large database of more than 7,000 individually 3D reconstructed dendritic spines from human cortical pyramidal neurons that is first transformed into a set of 54 quantitative features characterizing spine geometry mathematically. The resulting data set is grouped into spine clusters based on a probabilistic model with Gaussian finite mixtures. We uncover six groups of spines whose discriminative characteristics are identified with machine learning methods as a set of rules. The clustering model allows us to simulate accurate spines from human pyramidal neurons to suggest new hypotheses of the functional organization of these cells.

Data analysis and visualisationData

Make the most out of EBRAINS

EBRAINS is open and free. Sign up now for complete access to our tools and services.

Ready to get started?Create your account